Skip to content

Deployment

Deploy

$ threading deploy --target gcp-a100
[deploy] Containerizing workspace...
[deploy] Provisioning cluster [4x A100-80GB]
[deploy] MCP Server live: https://api.threading.cloud/v1/exp-92a

Targets

Target GPUs Best for
gcp-a100 4× A100-80GB Large models
gcp-v100 4× V100-16GB Standard ML
aws-p4d 8× A100-40GB Largest scale
aws-p3 4× V100-16GB Standard ML
azure-a100 4× A100-80GB Large models
local-gpu Your GPU(s) Development

Load data

$ threading ld s3://bio-data/microbiome_full_v2
[dataset] Mounting to /mnt/data...
[dataset] Sharding across 4 nodes
Scheme Example
s3:// s3://bucket/path/
gs:// gs://bucket/path/
az:// az://container/path/

Start jobs

$ threading start
[job] Spawning 512 workers...
[throughput] 12,500 samples/sec
[estimate] 2m 18s

Parameter sweeps

threading start --sweep "pca.n_components=[10,20,30,40,50]"

Monitor

threading status
threading logs -f

Teardown

threading stop --teardown

Cost optimization

Use spot instances:

threading deploy --target gcp-a100 --spot

Auto-shutdown:

threading deploy --target gcp-a100 --auto-shutdown 30m