Optimization Engine¶
Threading uses AI-powered analysis to detect inefficient patterns and apply optimizations automatically.
How it works¶
- Static analysis — Parse code, track data flow, match patterns
- Dynamic profiling — Measure time, memory, CPU utilization
- AI optimization — Detect bottlenecks, suggest and implement fixes
Strategies¶
Auto-vectorization¶
Before:
def normalize(data):
result = np.zeros_like(data)
for i in range(data.shape[0]):
row_sum = sum(data[i, :])
result[i, :] = data[i, :] / row_sum
return result
After:
Speedup: 150x
GPU offloading¶
| Operation | CPU | GPU | Speedup |
|---|---|---|---|
| Matrix multiply (10k×10k) | 12.4s | 0.08s | 155x |
| SVD (5k×5k) | 8.7s | 0.12s | 72x |
| Sort (100M elements) | 5.1s | 0.15s | 34x |
Kernel fusion¶
Combines operations to reduce memory bandwidth:
# Before: 3 memory passes
a = data * scale
b = a + offset
c = np.maximum(b, 0)
# After: 1 memory pass
c = np.maximum(data * scale + offset, 0)
Detection patterns¶
O(n²) algorithms:
[analyze] Detected O(n²) in pairwise_distance()
• Suggested: scipy.spatial.distance.cdist
• Speedup: ~1000x
Redundant computation:
Hints¶
# threading: optimize
def critical_function(data):
...
# threading: no-gpu
def cpu_only_function(data):
...
# threading: skip
def legacy_function(data):
...
Supported libraries¶
NumPy, Pandas, scikit-learn, SciPy, PyTorch, TensorFlow